Contents

1 General Questions of the Theory of Impedance Vibrators in the Spatial-Frequency Representation .. 1
 1.1 Problem Formulation and Initial Integral Equations 1
 1.2 Green’s Function as the Kernel of Integral Equations 4
 1.3 Integral Equations for a Current on Thin Impedance Vibrators 7
 1.4 Approximate Analytical Methods for the Solution of Integral Equations ... 9
 1.4.1 Series Expansion Technique 10
 1.4.2 Successive Iterations Method 13
 1.5 Averaging Method .. 15
References ... 19

2 Radiation of Electromagnetic Waves by Impedance Vibrators in Free Space and Material Medium ... 21
 2.1 Asymptotic Solution of Integral Equations for Vibrator Current in Free Space .. 21
 2.2 Vibrator Excitation in the Center by Concentrated EMF 24
 2.2.1 Impedance Vibrator with Lumped Load in the Center 37
 2.2.2 Surface Impedance of Thin Vibrators 38
 2.2.3 Resonant Properties of Impedance Vibrators in Free Space ... 41
 2.3 Impedance Vibrators in an Infinite Homogeneous Lossy Medium ... 44
 2.4 Radiation Fields of Impedance Vibrators in Infinite Medium 47
References ... 56

3 Radiation of Electromagnetic Waves by Impedance Vibrators in Material Medium over a Perfectly Conducting Plane 57
 3.1 Horizontal Impedance Vibrator in a Semi-infinite Material Medium ... 58
3.2 Systems of Crossed Impedance Vibrators in a Semi-infinite Material Medium ... 67
 3.2.1 Comparison of Numeric Calculations Obtained by Analytical Solution and the Finite Elements Method 81
3.3 Formation of the Radiation Field with Specified Spatial-Polarization Characteristics by a System of Crossed Impedance Vibrators ... 85
References ... 90

4 Electromagnetic Waves Scattering by Irregular Impedance Vibrators in Free Space ... 93
 4.1 Impedance Vibrators with Variable Radius 93
 4.2 Vibrators with Variable Surface Impedance 100
 4.2.1 Solution of the Equation for Current by the Averaging Method ... 100
 4.2.2 Solution of the Equation for Current by the Induced EMF Method ... 102
 4.2.3 Choice of the Approximating Functions for the Vibrator Current ... 108
References ... 111

5 Generalized Method of Induced EMF for Investigation of the Characteristics of Impedance Vibrators 113
 5.1 Problem Formulation and Solution 113
 5.2 Impedance Vibrators with Arbitrary Excitation Point 116
 5.3 Vibrator with Symmetric and Antisymmetric Components of Surface Impedance in Free Space 133
 5.4 System of Impedance Vibrators in Free Space 138
References ... 154

6 Radiation of Electromagnetic Waves by Radial Impedance Vibrators on a Perfectly Conducting Sphere 155
 6.1 Problem Formulation and Initial Integral Equations 156
 6.2 Solution of the Equation for Current by the Successive Iterations Method ... 157
 6.3 Radiation Fields of the Radial Impedance Vibrator on a Perfectly Conducting Sphere ... 162
 6.4 Numerical Results .. 164
References ... 167

7 Electromagnetic Waves Scattering by Impedance Vibrators in a Rectangular Waveguide ... 169
 7.1 Vibrators with Constant Surface Impedance in Single-Mode and Below-Cutoff Rectangular Waveguides 169
7.1.1 Problem Formulation and Solution by the Averaging Method ... 169
7.1.2 Current Distribution and Scattering Fields of Impedance Vibrators in a Waveguide 171
7.1.3 Resonant Properties of Impedance Vibrators in Single-Mode and Below-Cutoff Waveguides 177

7.2 Vibrators with Variable Surface Impedance in a Rectangular Waveguide .. 184
7.2.1 Problem Formulation and Solution by the Method of Induced EMF ... 185
7.2.2 Numerical Results ... 188

7.3 Impedance Vibrators of Variable Radius in a Rectangular Waveguide .. 188
7.3.1 Problem Formulation and Solution by the Method of Induced EMF ... 192
7.3.2 Numerical Results ... 194

7.4 Original Aspects of Experimental Investigations 195
References .. 198

Conclusion .. 199
Appendix A Electric Dyadic Green’s Functions of the Considered Electrodynamical Volumes 201
Appendix B Basics of the Method of Moments 205
Appendix C Generalized Integral Functions 209
Appendix D Series Summation in the Function of the Self-Field of a Vibrator in a Rectangular Waveguide 213
Appendix E Electromagnetic Values in the CGS and SI Systems of Units ... 217

Index ... 221
Thin Impedance Vibrators
Theory and Applications
Nesterenko, M.V.; Katrich, V.A.; Penkin, Y.M.; Dakhov, V.M.; Berdnik, S.L.
2011, XIII, 223 p. 118 illus., 1 in color., Hardcover