Towards Equity in Mathematics Education

Gender, Culture, and Diversity

Bearbeitet von
Helen Forgasz, Ferdinand Rivera

ISBN 978 3 642 27701 6
Format (B x L): 15,5 x 23,5 cm
Gewicht: 1082 g

Weitere Fachgebiete > Pädagogik, Schulbuch, Sozialarbeit > Schulpädagogik > Naturwissenschaften, Mathematik (Unterricht & Didaktik)

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDELUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Equity in Mathematics Education: Unions and Intersections of Feminist and Social Justice Literature

Reprinted from ZDM (2008), 40(4)

Laura Jacobsen Spielman

1 Introduction ... 40
2 Gender Differences in Mathematics 40
3 Situating Gender Equity Within Broader Equity Concerns 41
4 Global Picture of Gender Equity 42
5 Reconstructing Mathematics: Mathematics Education in the Public Interest .. 43
 5.1 Setting New Goals in Mathematics Education 44
 5.2 Why Mathematical Literacy? 47
 5.3 Why Critical Literacy? 48
 5.4 Why Community Literacy? 49
 5.5 Unions and Intersections of Feminist and Social Justice Literature ... 51
6 Summary .. 52
References .. 53

Preface to “Adolescent Girls’ Construction of Moral Discourses and Appropriation of Primary Identity in a Mathematics Classroom”

Jae Hoon Lim

References .. 61

Adolescent Girls’ Construction of Moral Discourses and Appropriation of Primary Identity in a Mathematics Classroom

Reprinted from ZDM (2008), 40(4)

Jae Hoon Lim

1 Introduction ... 63
 1.1 Theoretical Framework: Bakhtin’s Theory of Language and Identity ... 65
2 Methodology .. 66
3 The Teacher and Classroom Contexts 69
4 Three Students ... 70
 4.1 Jessica: They Call Us “Smarties” 70
 4.2 Stella: Between Two Worlds 73
 4.3 Amanda: Political Dissent 76
5 Discussion ... 79
References .. 83

Shall We Do Politics or Learn Some Maths Today? Representing and Interrogating Social Inequality

Paul Dowling and Jeremy Burke

1 Strategies of Representation 87
2 Texts, Contexts and Patriarchy 90
3 Putting the Class into Texts 96
4 Critical Mathematics Education? 99
References .. 101
Commentary on the Chapter by Paul Dowling and Jeremy Burke,
“Shall We Do Politics or Learn Some Maths Today? Representing
and Interrogating Social Inequality” 105
Bill Atweh
1 Mathematics and the World 105
2 Mathematics Education and Social Justice 106
References ... 109

Commentary on the Chapter by Dowling and Burke, “Shall
We Do Politics or Learn Some Maths Today? Representing
and Interrogating Social Inequality” 111
Joanne Rossi Becker
References ... 114

Gender Role Stereotypes in the Perception of Mathematics:
An Empirical Study with Secondary Students in Germany 115
Gabriele Kaiser, Maren Hoffstall, and Anna B. Orschulik
1 State of the Art .. 115
2 Design of the Study 117
2.1 Description of the Instrument and Data Analysis 117
2.2 Description of the Sample 120
3 Central Results of the Quantitative Study 121
4 Gender-Specific Differences in the Perception of Mathematics: Qualitative Results 130
4.1 General Results 130
4.2 Analysis of Reasons 132
5 Possible Educational Consequences 136
Appendix ... 138
References .. 140

Commentary on the Chapter by Gabriele Kaiser, Maren Hoffstall
and Anna B. Orschulik, “Gender Role Stereotypes in the Perception
of Mathematics—Results of an Empirical Study with Secondary
Students in Germany” 141
Sarah Theule-Lubienski
References .. 144

Commentary on the Chapter by Gabriele Kaiser, Maren Hoffstall,
and Anna B. Orschulik, “Gender Role Stereotypes in the Perception
of Mathematics: Results of an Empirical Study with Secondary
Students in Germany” 145
Colleen Vale
1 Affective Factors Matter 145
2 Impact of Affective Factors 147
References .. 148
Students’ Attitudes, Engagement and Confidence in Mathematics and Statistics Learning: ICT, Gender, and Equity Dimensions

Anastasios N. Barkatsas

1 Background and Context of the Chapter

1.1 The MTAS Hypothesised Model

2 Selected Research Findings

2.1 (I) MTAS Studies: Aims, Methods, Samples, Data Analyses and Findings

2.2 Study 1. The Development of the MTAS Scale

2.3 Study 2. Investigating the Complex Relationship Between Students’ Mathematics Confidence, Confidence with Computers, Attitude to Learning Mathematics with Computers, Affective Engagement, and Behavioural Engagement, Achievement, Gender, and Year Level Using MTAS

2.4 Study 3. Attitudes to Using CAS Calculators in the Classrooms of Middle and Senior Secondary Mathematics Students

2.5 (II) Survey of Attitudes Toward Statistics [SATS] Scale Studies: Aims, Methods, Samples, Data Analyses and Findings

2.6 Study 4. The Construct Validity of the SATS

2.7 Study 5. Postgraduate Students’ Attitudes Toward Statistics

3 What do the Findings from the Five Studies Tell Us? Conclusions and Implications

3.1 Secondary Mathematics Students’ Attitudes, Engagement and Use of ICT for Learning Mathematics

3.2 Tertiary Students’ Attitudes Toward Statistics

Appendix 1 Mathematics and Technology Attitudes Scale

Appendix 2 Factor Structure of the MTAS Scale

References

Commentary on the Chapter by Anastasios Barkatsas, “Students’ Attitudes, Engagement and Confidence in Mathematics and Statistics Learning: ICT, Gender, and Equity Dimensions”

Kenneth Ruthven

References

Commentary on the Chapter by Anastasios Barkatsas, “Students’ Attitudes, Engagement and Confidence in Mathematics and Statistics Learning: ICT, Gender, and Equity Dimensions”

Hazel Tan

1 Theoretical Basis of MTAS

2 Theoretical Basis of SATS

3 Implications for Equitable Policy and Practice

References
Part II Equity and Culture
Ferdinand Rivera and Helen Forgasz

Preface to “Israeli Jewish and Arab Students’ Gendering of Mathematics”
David Mittelberg and Helen Forgasz
References

Israeli Jewish and Arab Students’ Gendering of Mathematics
Reprinted from ZDM (2008), 40(4)
Helen J. Forgasz and David Mittelberg

1 Introduction

1.1 Contextualising the Study

1.2 Gendered Beliefs About Mathematics

2 Aims and Methods

2.1 Instruments

2.2 Sample

2.3 Data Analyses

3 Results and Discussion

3.1 Israeli and Australian Grade 9 Students’ Perception of Mathematics Achievement

3.2 Perceptions of Mathematics Achievement: Ethnic Comparisons

3.3 Results from the Two Instruments

3.4 Mathematics as a Gendered Domain: Gender Differences Within Ethnic Groups

3.5 Gender Differences Among Israeli Jews

3.6 Gender Differences Among Israeli Arabs

4 Conclusions and Implications

Appendix

References

Preface to “Ethnomathematics and Philosophy”
Bill Barton
References

Ethnomathematics and Philosophy
Reprinted from ZDM (1999), 31(2)
Bill Barton

1 The Problems and the Challenge

2 Existing Philosophical Positions

3 An Alternative Model

4 Deconstructing the Past

5 What Is the Evidence?

6 Exciting Horizons

References
Preface to “Cultural Differences, Oral Mathematics, and Calculators in a Teacher Training Course of the Brazilian Landless Movement” 241
Gelsa Knijnik and Fernanda Wanderer
References ... 244

Cultural Differences, Oral Mathematics, and Calculators in a Teacher Training Course of the Brazilian Landless Movement 245
Reprinted from ZDM (2005), 37(2)
Gelsa Knijnik, Fernanda Wanderer, and Claudio José de Oliveira
1 Introduction .. 245
2 Cultural Differences and Oral Mathematics 246
3 The Empirical Part of the Research 249
4 The Peasant’s Oral Mathematics Practices 251
5 Oral Mathematics and the Calculator in the Teacher Training Course ... 254
6 Final Words .. 256
References ... 257

Preface to “Immigrant Parents’ Perspectives on Their Children’s Mathematics Education” 261
Marta Civil, Núria Planas, and Beatriz Quintos
References ... 265

Immigrant Parents’ Perspectives on Their Children’s Mathematics Education 267
Reprinted from ZDM (2005), 37(2)
Marta Civil, Núria Planas, and Beatriz Quintos
1 Introduction .. 267
2 Theoretical Framework 269
3 Context and Method 270
4 Results: “Before and Now” 272
 4.1 About the Teaching of Mathematics 274
 4.2 About the Language 277
5 Conclusion .. 280
References ... 281

Mathematics Education for Adults: Can It Reduce Inequality in Society? 283
Wolfgang Schlöglmann
1 Introduction .. 283
2 Lifelong Learning: A Consequence of Technological Development and Globalisation? 284
3 Mathematics and Society: Some Remarks 286
 3.1 The Development of Mathematics as a Tool for Economic Growth—The Relationship to Culture 286
 3.2 What Kind of Society Needs Mathematics as a Tool? 288
 3.3 Mathematics and Democracy 288
 3.4 Mathematics and New Technologies: New Functions of the Tool “Mathematics” 289
3.5 Why Are Mathematical Methods so Credible? 290
3.6 Should Everybody Learn Mathematics? 291
4 Adult Education in Mathematics 291
5 Vocational Mathematics Versus School Mathematics:
 Some Remarks ... 292
6 Some Results from an Empirical Study of Adult Education
 in Austria .. 294
7 “Must Learn Mathematics:” Some Remarks on the Emotional
 Constitution of a Group of Adult Learners 296
8 Is Mathematics Learning Possible for Adults? 297
9 Can Mathematics Education for Adults Reduce Inequality
 in a Society? ... 298
References .. 299

Commentary on the Chapter by Wolfgang Schlöglmann, “Mathematics
Education for Adults: Can It Reduce Inequality in Society?” 303
Tine Wedege
1 The Problématique .. 304
2 Why Teach and Learn Mathematics? 305
References .. 306

Commentary on the Chapter by Wolfgang Schlöglmann, “Mathematics
Education for Adults: Can It Reduce Inequality in Society?” 309
Jaguthsing Dindyal
References .. 312

Heteroglossia in Multilingual Mathematics Classrooms 315
Richard Barwell
1 Research on Teaching and Learning Mathematics in Linguistically
 Diverse Classrooms ... 317
2 The Diversity of Language 318
3 Tension Between School and Home Languages 320
4 Tension Between Formal and Informal Language in Mathematics . 322
5 Tension Between Language Policy and Mathematics Classroom
 Practice .. 324
6 Tension Between a Language for Learning Mathematics
 and a Language for Getting On in the World 325
7 Discussion: Heteroglossia and Equity 327
8 Conclusion: Shifting the Tension 329
References .. 330

Commentary on the Chapter by Richard Barwell, “Heteroglossia
in Multilingual Mathematics Classrooms” 333
Núria Planas
1 Viewing Orchestration in “School Versus Home Languages” 334
2 Viewing Orchestration in Formal Versus Informal Language
 in Mathematics ... 335
3 Viewing Orchestration in Language Policy Versus Mathematics Classroom Practice ... 336
4 Viewing Orchestration in Language for Learning Mathematics Versus Getting On in the World ... 336
References ... 337

Commentary on the Chapter by Richard Barwell, “Heteroglossia in Multilingual Mathematics Classrooms” 339
Luis Radford
1 Language in the Mathematics Classroom 339
2 Language as Ideological ... 340
3 Alterity .. 341
References ... 342

Part III Equity and Curriculum Diversity
Ferdinand Rivera and Helen Forgasz

Preface to “Doubtful Rationality” .. 347
Ole Skovsmose
References ... 350

Doubtful Rationality ... 351
Reprinted from ZDM (2007), 39(3)
Ole Skovsmose
1 Fabrication by Mathematics-Based Rationality 353
1.1 Fabricating Possibilities ... 353
1.2 Fabrication of Strategies ... 354
1.3 Fabricating Facts ... 355
1.4 Fabrication of Contingencies ... 356
1.5 Fabrication of Perspectives .. 356
2 Prescription Readiness .. 357
3 Differentiated Labelling .. 359
4 Ethical Filtration ... 360
5 Citizenship and Critical Citizenship 362
6 Conclusions ... 365
References ... 366

Preface to “A Socio-Political Look at Equity in the School Organization of Mathematics Education” 369
Paola Valero
References ... 371

A Socio-Political Look at Equity in the School Organization of Mathematics Education ... 373
Reprinted from ZDM (2007), 39(3)
Paola Valero
1 Introduction ... 373
2 Mathematics Education as Social and Political Practices: A Theoretical and Methodological Framework 374
3 Studying Equity in the Network of School Mathematics Education Practices ... 376
 3.1 The Lonely Girl .. 377
 3.2 They Are Creeping into 378
 3.3 Entering the Discussion of Equity in Mathematics Education Research ... 379
 3.4 Examining the Construction of Disadvantage in the School Organization of Mathematics Education 380
4 Power and Equity in Mathematics Education Research ... 385
References ... 385

Looking for Gold: Catering for Mathematically Gifted Students Within and Beyond ZDM .. 389
Gilah C. Leder
1 Introduction .. 389
2 ZDM ... 390
 2.1 ZDM—1990 to 1999 ... 391
 2.2 ZDM—2000 to 2009 ... 395
 2.3 Mathematically Gifted Students—A Matter of Convenience in Problem Solving 398
 2.4 Mathematically Gifted Students—Miscellaneous Issues 400
3 Concluding Comments .. 403
References ... 403

Commentary on the Chapter by Gilah Leder, “Looking for Gold: Catering for Mathematically Gifted Students Within and Beyond ZDM” .. 407
Boris Koichu
1 What Counts for Gold? ... 408
2 More Gold Is in the Mine ... 409
References ... 410

Commentary on the Chapter by Gilah Leder, “Looking for Gold: Catering for Mathematically Gifted Students Within and Beyond ZDM” .. 411
Rosemary Callingham
References ... 413

From the Known to the Unknown: Pattern, Mathematics and Learning in Papua New Guinea .. 415
Graeme Were
1 Mathematics in the Pacific .. 417
2 Pattern in New Ireland, Papua New Guinea 420
3 Concluding Comments: Toward the Mathematical Mind 425
References ... 427
Commentary on the Chapter by Graeme Were, “From the Known to the Unknown: Pattern, Mathematics and Learning in Papua New Guinea” 429
Alan J. Bishop
References 431

Commentary on the Chapter by Graeme Were, “From the Known to the Unknown: Pattern, Mathematics and Learning in Papua New Guinea” 433
Steven K. Khan
1 Patterns in a Field 433
2 The Mathematical Mind: An Issue for Equity 435
References 437

Part IV Equity and Biology
Helen Forgasz and Ferdinand Rivera

Gender Differences in Mathematics and Science Achievement
Across the Distribution: What International Variation Can Tell Us
About the Role of Biology and Society 441
Andrew M. Penner and Todd CadwalladerOlsker
1 Introduction 441
2 The Biological Production of Gender Differences in Mathematics 444
2.1 Genetic Considerations 444
2.2 Hormonal Considerations 445
2.3 Cerebral Considerations 445
3 The Social Production of Gender Differences in Mathematics 446
3.1 Incentive Structures 446
3.2 Status 447
4 Data 447
4.1 Mathematics and Science Data 448
4.2 Country-Level Data 449
4.3 Modeling Strategy and Precedents 450
5 Results 452
5.1 Basic Descriptive Statistics 452
5.2 Examining the Distribution Extremes 454
5.3 Modeling Cross-National Gender Differences Across the Distribution 457
6 Discussion 461
Appendix 464
References 466

Commentary on the Chapter by Penner and CadwalladerOlsker, “Gender Differences in Mathematics and Science Achievement Across the Distribution: What International Variation Can Tell Us About the Role of Biology and Society” 469
James S. Dietz
References 472
Commentary on the Chapter by Penner and CadwalladerOlsker, “Gender Differences in Mathematics and Science Achievement Across the Distribution: What International Variation Can Tell Us About the Role of Biology and Society” 475
Robert (Bob) Klein
1 The Problem of Scope and Scale 476
2 The Pushmi-Pullyu Except This Thing Has TWO Tails 478
3 Conclusion 479
References 480

Research-Based Mathematics Instruction for Students with Learning Disabilities 481
Marjorie Montague and Asha K. Jitendra
1 Characteristics of Children and Adolescents with MLD 483
2 Research-Based Math Instruction for Students with MLD 484
3 Direct Instruction Research in Mathematics 485
4 Cognitively Based Math Problem Solving Research 486
 4.1 Cognitive Strategy Instruction (CSI) 488
 4.2 Research Evidence in Support of CSI for Math Problem Solving 491
 4.3 Schema-Based Instruction (SBI) 492
 4.4 Research Evidence in Support of SBI for Math Problem Solving 495
5 Recommendations for Instructing Students with LD 498
References 498

Commentary on the Chapter by Marjorie Montague and Asha Jitendra, “Research-Based Mathematics Instruction for Students with Learning Disabilities” 503
Ann Dowker
References 505

Commentary on the Chapter by Marjorie Montague and Asha Jitendra, “Research-Based Mathematics Instruction for Students with Learning Disabilities” 507
Delinda van Garderen
1 Building on and Extending the Cognitively Based Research in Math Problem Solving 508
2 Promoting Instruction for Students with Disabilities: Implications Beyond the Classroom 509
References 511

Neural Correlates of Gender, Culture, and Race and Implications to Embodied Thinking in Mathematics 515
Ferdinand Rivera
1 Introduction 515
2 Analyzing Issues in Mathematics Education from a Neuroscience Perspective 518