
HANSER

Sample Pages

Visible Light Communications

Theoretical and Practical Foundations

ISBN (Book): 978-3-446-46206-9

ISBN (E-Book): 978-3-446-46172-7

For more information and to order visit

www.hanserpublications.com (in the Americas)

www.hanser-fachbuch.de (outside the Americas)

© Carl Hanser Verlag, München

Peter Adam Hoeher

Visible Light Communications

Theoretical and Practical Foundations

The Author:

Prof. Dr. Peter A. Hoeher,

Fellow of the IEEE, is a Full Professor of electrical and information engineering at Kiel University, Kiel, Germany

Distributed in the Americas by:

Hanser Publications

6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USA

Fax: (513) 527-8801 Phone: (513) 527-8977 www.hanserpublications.com

Distributed in all other countries by:

Carl Hanser Verlag

Postfach 86 04 20, 81631 Muenchen, Germany

Fax: +49 (89) 98 48 09 www.hanser-fachbuch.de

The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

The final determination of the suitability of any information for the use contemplated for a given application remains the sole responsibility of the user.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission in writing from the publisher.

To keep this book in stock, we used a print-on-demand solution. The quality of the product may differ from the original. The content remains unchanged.

© Carl Hanser Verlag, Munich 2019 Editor: Dipl.-Ing. Natalia Silakova-Herzberg Production management: Anne Kurth Cover design: Max Kostopoulos

Image rights: © shutterstock.com/metamorworks

Cover concept: Marc Müller-Bremer, www.rebranding.de, Munich, Germany

Typesetting: Peter Adam Hoeher, Heikendorf, Germany Printed: BoD – Books on Demand, Norderstedt, Germany

Printed in Germany

Print-ISBN 978-3-446-46206-9 E-Book-ISBN 978-3-446-46172-7

Preface

"Data is the future of lighting" Larry French

Visible light communication (VLC) is a fiberless data transmission technology based on visible light. VLC is an emerging field. One of the key motivations is the fact that light can be used simultaneously for illumination as well as for communication and/or positioning purposes. In return, due to this dual/triple functionality, no additional power supply is necessary for data transmission and localization. Endeavor to replace outdated light sources by LEDs can be combined with VLC technology. Compared to radio-based Wi-Fi, lightbased data transmission systems - dubbed Li-Fi if fully networked - offer distinct features: they are human-friendly, provide higher data security on the physical layer, and permit low-cost hardware components. Light waves do not interfere with wireless radio signals and do not penetrate walls. Hence, the entire optical spectrum can be re-used in neighboring rooms or by using spatially separated spot beams. VLC systems are license-free world-wide and can be used in environments with strong electromagnetic radiation (as in fabrication halls and power plants), in electromagnetic-interference-sensitive areas (like aircraft cabins and hospitals), or as an alternative to Wi-Fi (for example in domestic, office, and retail/public surroundings). VLC technology is able to enhance smart lighting infrastructure and Internet-of-Things (IoT) applications in general. VLC is suitable for indoor as well as outdoor applications. LED-based Car-to-X communication is considered to be an enabling platform towards autonomous driving.

The emphasis of this textbook is on LED-based systems in the visible range of the radio spectrum and the adjacent ultraviolet and infrared bands. However, also aspects of laser-based **free-space optical** (FSO) communication are discussed. The entire range is covered, from theoretical considerations to system concepts, circuit design issues, and a selection of suitable commercially available off-the-shelf photonic devices. However, networking aspects and fiber optics are beyond scope.

The first (more background-oriented) part is devoted to goals and applications, fundamentals of illumination engineering, VLC and IR/UV channel modeling, optical intensity modulation schemes, as well as multiple-input multiple-output techniques for optical communications. Among the main challenges in **optical wireless communications** (OWC) to date are limited transmission rates, particularly in conjunction with off-the-shelf LEDs,

and interference stemming from nearby illumination fixtures and from daylight. Considering these factors, focus is on advanced digital modulation techniques in order to improve spectral efficiency, but also on camera-based communication methods.

In the second (more practically oriented) part, OWC standards and ongoing standardization efforts, the software-defined radio concept and its application to VLC and FSO communication, selection criteria of photonic devices and high-speed amplifiers, fundamental circuit designs of OWC system components, selected VLC and FSO applications, and finally optical rangefinding and **visible light positioning** (VLP) techniques are presented.

Acknowledgment

Special thanks to Prof. Dr. Jan Mietzner (HAW Hamburg) and my Ph.D. students Sami Alkubti Almasri, Sunasheer Bhattacharjee, Martin Damrath, Maurice Hott, Nils Johannsen, Adrian Krohn (Kiel University) and Jan Sticklus (GEOMAR Helmholtz Centre for Ocean Research Kiel) for proofreading of the manuscript, Eric Elzenheimer (Kiel University) for preparing all colored free-form drawings, and Kevin Prehn for technical support. Many thanks also to Natalia Silakova from Carl Hanser Verlag for her encouragement in this book project and Stephan Korell from le-tex publishing services for his professional advice concerning ETEX questions. Last but not least, I am grateful to the patience and support of my wife Sabah and our children.

Disclaimer

Although the manuscript has been prepared carefully, typographical errors and mistakes are possible. The author is responsible for any flaw. Feedback by email to

VLC-book@web.de

is welcome.

Throughout this monograph, off-the-shelf products are pointed out, including LEDs, photodetectors, and computer platforms suitable for software-defined radio. These products are intended to serve as implementation guidelines. The author and his chair are not sponsored by any of the mentioned companies. The product selection is not intended to be complete. The author does not provide any warranty with respect to correctness and product changes. All product and company names are trademarks of their respective holders.

Kiel, Germany, May 2019

Peter Adam Hoeher

Table of Contents

1	Introduction	1	
1.1	Historical Background and Scope	1	
1.2	Motivations for Using Visible Light Communication		
1.3	Applications of Visible Light Communication	7	
1.4	Smart Lighting and VLC Consumer Products	10	
1.5	Chapter Summary	12	
1.6	Outline	13	
Prol	blems	14	
Refe	erences	15	
2	Fundamentals of Illumination Engineering	17	
2.1	Light Spectrum	17	
2.2	Color Mixing	18	
2.3	CIE, RGB, and HSV Color Spaces	21	
	2.3.1 CIE 1931 XYZ Color Space	21	
	2.3.2 RGB Color Space	24	
	2.3.3 HSV Color Space	26	
2.4	Color Quality	28	
2.5	Candela vs. Lumen vs. Lux.	30	
2.6	Dimming	34	
2.7	Flicker	35	
2.8	Human Centric Lighting	36	
2.9	Chapter Summary	37	
Prol	blems	38	
Refe	erences	39	

3	VLC a	nd IR/UV Channel Modeling	41
3.1	Lambe	ertian and Generalized Lambertian Sources	41
3.2	Propag	gation in Free-Space	43
3.3	Indoo	r Propagation	45
3.4	Propag	gation in Sea Water	51
3.5	Infrare	ed and Ultraviolet Channel Modeling	53
3.6	Equiva	alent Discrete-Time Electrical Channel Model	54
3.7	Signal	-to-Noise Ratio.	59
3.8	Chapt	er Summary	60
Prol	olems		61
Refe	erences .		62
4	Modu	ation Schemes for Optical Wireless Communications	65
4.1	Intens	ity Modulation and Direct Detection (IM/DD)	65
4.2	Const	raints and Performance Criteria	68
4.3	Single	-Carrier Modulation (SCM)	69
	4.3.1	On-Off Keying (OOK)	70
	4.3.2	Amplitude Shift Keying (ASK), PAM and QAM	71
	4.3.3	Pulse Width Modulation (PWM)	73
	4.3.4	Pulse Position Modulation (PPM)	73
	4.3.5	Variable Pulse Position Modulation (VPPM)	75
	4.3.6	Carrierless Amplitude and Phase Modulation (CAP)	75
4.4	Color-	Domain Modulation	78
	4.4.1	Color Shift Keying (CSK)	78
	4.4.2	Digital Color Shift Keying (DCSK)	80
	4.4.3	Color Intensity Modulation (CIM)	81
	4.4.4	Metameric Modulation (MM)	82
	4.4.5	Deep-Learning-Based Multicolor Transceiver Design	83
4.5	Multi-	Carrier Modulation (MCM)	85
	4.5.1	Orthogonal Frequency-Division Multiplexing (OFDM)	85
	4.5.2	Unipolar OFDM Versions: DMT, DCO-OFDM, PAM-DMT, ACO-OFDM, Flip-OFDM, U-OFDM	95
	4.5.3	Spectrally-Enhanced Unipolar OFDM: SEE-OFDM, LACO-OFDM, eACO-OFDM, eU-OFDM, GREENER-OFDM, ePAM-DMT	100
	4.5.4	Hybrid Schemes: SO-OFDM, RPO-OFDM, ADO-OFDM, HACO-OFDM, P-OFDM, ASCO-OFDM	101
	4.5.5	Carrierless OFDM (cOFDM)	102
	4.5.6	Non-DFT-Based Multi-Carrier Modulation: DHT, WPDM, HCM	107
4.6	Code-	Division Multiplexing (CDM)	109

4.7	Superp	osition Modulation (SM)	112
4.8	Camera	a-Based Communication	115
	4.8.1	Global-Shutter Sampling	116
	4.8.2	Rolling-Shutter Sampling	118
	4.8.3	Region-of-Interest Signaling	119
	4.8.4	Hybrid Camera-Based Photodetector-Based Systems	122
4.9	Chapte	r Summary	122
Prob	lems		123
Refe	rences .		125
_	Ontion	I Ministrale Inquist Ministrale Ontonio (MINAO) Techniques	100
5	-	Multiple-Input Multiple-Output (MIMO) Techniques	
5.1		of Optical MIMO Transmission	133
5.2		action to Orthogonal and Quasi-Orthogonal Space-Time Block Codes	136
	5.2.1	Optical Space-Time Coding with On-Off Keying	138
	5.2.2	Optical Space-Time Coding with <i>Q</i> -ary Amplitude Shift Keying	139
	5.2.3	Optical Space-Time Coding with <i>Q</i> -ary Pulse Position Modulation	141
5.3	•	ion MIMO	141
5.4	Spatial	Multiplexing	142
5.5	Spatial	Modulation	143
5.6	Spatial	Optical OFDM	144
5.7	MIMO	Aspects of Superposition Modulation	145
5.8	Multiu	ser MISO Broadcasting.	147
5.9	MIMO	Aspects of Optical Camera Communications	149
5.10	Chapte	er Summary	150
Prob	lems		151
Refe	rences .		152
6	OWC S	Standardization	155
6.1		Standards and Ongoing Standardization Efforts	
6.2		02.15.7 VLC Standard	158
0.2	6.2.1	PHY I Specifications	159
	6.2.2	-	162
	6.2.3	PHY II Specifications.	
62		PHY III Specifications	163 168
6.3 Drob		er Summary	
	rences		169
кете	rences		170

7	Softwa	are-Defined Radio Concept and its Applications in OWC	171
7.1	Softwa	re-Defined Radio Concept	171
7.2	Adapti	ve Radio, Cognitive Radio, and Intelligent Radio	174
7.3	Hardw	rare-Friendly Modulation	175
7.4	Hardw	rare Platforms Suitable for Data Rates in the Mbps Range	175
	7.4.1	Raspberry Pi	176
	7.4.2	STEMlab (Red Pitaya)	177
	7.4.3	STM32 Microcontroller	178
7.5	Hardw	rare Platforms Suitable for Data Rates in the Gbps Range	179
7.6	Chapte	er Summary	180
Pro	olems		180
Refe	erences .		181
8		nic Devices and High-Speed Amplifiers	
8.1		onductor-Based Light Sources	
	8.1.1	III-V Semiconductor LEDs	
	8.1.2	OLEDs and other LED Types	189
	8.1.3	Lasers	190
8.2	Semic	onductor-Based Photodetectors	190
	8.2.1	Silicon Photodiodes and Phototransistors	190
	8.2.2	Avalanche Photodetectors and Silicon Photomultipliers	194
	8.2.3	CCD and CMOS Image Sensors	195
8.3	High-S	Speed Amplifiers	196
	8.3.1	Discrete Devices	196
	8.3.2	Operational Amplifiers	197
8.4	Chapte	er Summary	203
Pro	olems		204
Refe	erences .		205
•	0!!	A Desire Bules (see OMO Tressering and Desirence	007
9		t Design Rules for OWC Transmitters and Receivers	
9.1		nd Laser-Diode Drivers	
	9.1.1	Drivers Suitable for Two-Level Modulation Schemes	
	9.1.2	Drivers Suitable for Analog Waveforms	
	9.1.3	Multistring LED Drivers	
9.2	Transi	mpedance Amplifiers	
	9.2.1	Photovoltaic Mode vs. Photoconductive Mode	
	9.2.2	Photodetector Circuit Design Wizard	217
9.3	Comp	ensation of Ambient Light	218
	9.3.1	Circuit Design Solutions	218

	9.3.2	Mechanical Constructions	218	
	9.3.3	Smart Glass and LCD-Based Optical Filtering	219	
9.4	Chapte	r Summary	220	
Prob	lems		220	
Refer	ences		222	
10	0.1	ad VII O and EOO Annillantian	000	
		ed VLC and FSO Applications		
	_	idelity (Li-Fi)		
	-	Underwater Communication		
		pace Optical Ethernet		
	_	Relaying and Modulating Retroreflection		
	-	pace Optical and Hybrid Microwave/Optical Communications		
	-	r Summary		
Refer	rences		233	
11	Optica	I Rangefinding and Visible Light Positioning	235	
	-	Rangefinding		
	_	Optical Runtime Measurements		
		Time-of-Flight Camera		
		Triangulation		
		Range Estimation by Stereo Vision		
11.2		Light Positioning (VLP)		
		Proximity Estimation		
		Received Signal Strength (RSS)		
	11.2.3	Fingerprinting (FP)		
	11.2.4	Time-of-Arrival (ToA) Localization		
	11.2.5	Time-Difference-of-Arrival (TDoA) Localization		
	11.2.6	Angle-of-Arrival (AoA) Localization		
	11.2.7	Image-Sensor-Based Localization		
	11.2.8	Hybrid Localization		
11.3	Chapte	r Summary	249	
	•			
List	of Abb	reviations	253	
Suh	Subject Index 259			

Introduction

Learning Outcomes:

- What are the motivations and goals of visible light communication (VLC)?
- What are possible applications of VLC and related techniques?
- What are the advantages compared to radio communication?
- What are the drawbacks compared to radio communication?
- What is the current market situation?

■ 1.1 Historical Background and Scope

Light has been used for data communication since a few thousands of years [Dar12]. Already in ancient times, smoke and fire signals were used for transmission of short messages, probably even over significant distances. It has been handed down that the Greek victory over Troja in the 12th century BC was delivered by means of **fire signaling** over a distance of about 555 km from Troja to Argos.

Later, signaling towers were built for the purpose of optical communication. On the island of Corsica for example (as well as in other Mediterranean places), visitors still are witnessing a ring of **signaling towers** along the coastal shoreline. In Corsica alone, about 150 Genoese towers were erected during the 16th century AD to defend the island from the menace of Barbary pirates. Upon alarm, optical signals were sent to the neighboring towers in the form of smoke or fire, possibly supplemented by acoustical signals. Although very successful, the message rates were quite limited. As a reminiscent, probably in all countries around the world with coastal access, lighthouses are still in use for the purpose of maritime navigation.

After the invention of the telescope, further technical progress was achieved. During the French revolution in the 18th century, the French engineer Claude Chappe invented an **optical telegraphy** device based on swivel-mounted signaling arms. With these signaling arms, a more efficient encoding/encryption and hence somewhat higher data rates could be achieved. Based on Chappe's invention, **semaphore systems** were implemented

in France, Sweden, Denmark, England, and Prussia. Between 1832 and 1849, 62 telegraph stations were maintained between Berlin and the Rhine Province, covering a distance of almost 550 km. It is reported that a message could travel the complete distance of the Prussian semaphore system in much less than an hour. Swivel-mounted signaling arms are still used in railway signaling systems in many countries. It is interesting to note that semaphore signal detection corresponds to optical pattern recognition. In connection with a pixelated light source and a camera, this is currently an emerging technique for low-rate data transmission and localization purposes. The data rate depends on the cardinality of the signal alphabet and on the frequency of changing the pattern.

Semaphore systems were replaced by **Morse telegraphy** after the invention of the so-called Morse code by Samuel F.B. Morse in 1833, refined in 1838/1848/1865. In the 19th and 20th century, Morse signals were transmitted, amongst other methods, by the so-called **heliograph**, a wireless solar telegraph. Inside the heliograph, sunlight is reflected by a mirror. In order to digitally modulate the light beam, either a pivoting mirror or a shutter was applied. An predecessor to the heliograph is the **heliotrope**, invented by Carl Friedrich Gauss in 1821 for geodetic surveys. Heliographs were used by legal armies for a long time, and are nowadays used by irregular military and regional forces. Optical Morse signaling is still used on surfaced submarines, for example, using special signaling lamps.

In 1880, Alexander Graham Bell and Charles Sumner Tainter have patented the so-called **photophone**. The photophone is an early version of a telephone, but is based on modulated light rather than on a modulated current carried by a twisted cable. The main principle of the photophone is to modulate a collimated light beam by means of a flexible mirror. Stimulated by voice, the mirror becomes either convex or concave and thus bundles or scatters the light beam. As opposed to the heliograph, modulation is analog. At the receiver side, Bell and his assistant recovered the voice signal by a selenium photodetector connected to a loudspeaker.

Although the bulk of data nowadays is handled via high-speed/ultra-high-speed optical fiber transmission systems approaching up to 100 Gbps and beyond, **optical wireless communication** (OWC) is undergoing a revival [Hra05, Ram08, Arn12, Bou12, Gha12, Cha13, Lee15, Uys16, Cho18]. OWC is fiberless and covers the entire frequency range from ultraviolet (UV) via visible light (VL, VIS) to infrared (IR).

Based on the transmission distance, **OWC can be classified** as follows [Uys16]:

- Ultra-short-range OWC is employed in chip-to-chip communication in order to reduce the wiring overhead in multi-chips devices [MIIIO]. Optocouplers also put ultra-short-range OWC into practice.
- Short-range OWC is employed in body area networks and related applications.
 Furthermore, optical interconnections in computer centers fall in this range order [Kao12].
- Medium-range OWC is suitable for WLAN-type of services and distances, both for indoor (e.g., home entertainment) and outdoor (e.g., car-to-car and underwater) applications. This distance range is commonly served by solid-state light emitting devices. Sometimes infrared light is used, e.g. in remote controls, otherwise visible light is applied in medium-range OWC. Ultraviolet light is rarely practiced. Most use cases addressed subsequently are instances of this range category.

- Long-range OWC is used as a last mile access or as a mobile backbone network technique. Potential applications are data links between tall buildings, base stations, ships, and so forth. Long-range OWC is laser-based, with a few exceptions. Long-range OWC is known as free-space optical (FSO) communication [Wil02, Bou04, Kar11, Maj14, Raj16, Maj19].
- Ultra-long-range OWC is traditionally used in inter-satellite and deep-space laser links [Hem06], because scattering is negligible in space. However, also satellite-to-earth links are potential use cases. The first commercial laser-based satellite-to-earth link has recently been implemented between a low-earth-orbit satellite directly to an earth-based optical ground station.

Generally speaking, **visible light communication** (VLC) is the branch of OWC employing white light or selected colors between violet and red. In a more strict sense, the key idea of VLC is to conduct joint illumination and data transmission by modulating the light source(s). This concept dates back to the beginning of this century. In 2001, Masao Nakagawa and members of his team at Keio University in Yokohama invented and explored the fascinating idea of using light simultaneously for illumination and communication purposes [Kom03, Kom04]. Quickly, researchers from all over the world began to investigate fundamentals and applications of VLC [Kom03, Kom04, Arn15, Dim15, Gha17, Wan17, Chi18]. In most cases light emitting diodes (LEDs) are utilized, which can be switched "on" and "off" more than a million times per second without significant impact on operating lifetime and aging. Medium-range VLC applications are dominant.

In this textbook, we are not just interested in VLC defined in the strict sense, because the main principles, modulation and reception techniques, circuit designs etc. can also be applied to other light sources (like laser diodes, organic LEDs, and micro-LEDs) and to the adjacent frequency bands, namely infrared and ultraviolet. However, we do not consider optical fibers in any case.

■ 1.2 Motivations for Using Visible Light Communication

There are some **key features** which motivate using light for simultaneous illumination and data transfer:

■ Energy efficiency: For data transmission, the same power spent for illumination can be re-used. Hence, no extra power is necessary for data transfer, despite some extra amount of power needed for digital signal processing. Therefore, VLC is an energy-efficient ("green") technology. Power LEDs and LED arrays, which are typically used in VLC, are more energy efficient than traditional light sources. Efforts to replace outdated (incandescent/halogen/fluorescent) light sources by LEDs can be combined with VLC technology. Daylight harvesting and smart lighting can

be combined with future VLC systems to reduce energy consumption and CO_2 emission even further.

Still, it is worth to mention that illumination requirements and communication requirements are not easy to combine. Illumination involves energy efficiency, color control, and flicker avoidance. Vice versa, communication targets are throughput maximization and outage minimization. These partly conflicting requirements can only be joined by properly designed modulation techniques, c.f. Chapters 4 and 5. Otherwise, data transmission would impact the color quality of illumination/lighting, treated in Chapter 2.

- Tremendous unregulated bandwidth: As a rough rule of thumb, the following wavelengths are usable in conjunction with LEDs: about 200-400 nm in the UV range, 400-800 nm in the visible range (more precisely 380-780 nm), and roughly 800-1600 nm in the IR range. Note that 1 nm equals one billionth of a meter. This translates into signal bandwidths of about 1500 THz (UV), 750 THz (VL), and 375 THz (IR). These figures extend available and future radio-frequency (RF) frequency bands by orders of magnitudes. Tremendous bandwidth converts into extremely large channel capacity and hence potentially Gbps data rates. For reasons of fairness, however, it is worth mentioning that it is difficult with today's LED technology to efficiently exploit the tremendous bandwidth. Typically, LEDs have a spectral linewidth of about 10-40 nm if they are not coated. Otherwise even wider. Hence, the number of channels is limited. The number of quasi-orthogonal channels can be increased by optical filters and/or digital signal processing. The former are lossy, angle-dependent, and sometimes expensive,
- License-free operation: VLC is license-free and light spectrum is globally harmonized, since international radio frequency spectrum regulation usually stops at 3 THz. Light spectrum is complementary to RF frequency bands. License-free operation is also possible in the industrial, scientific and medical bands (which are used for Wi-Fi and personal area networks, for example) but the useful light spectrum is much wider than the classical radio spectrum.

whereas the latter option adds to computational complexity.

- High signal-to-noise ratio: VLC systems making use of power LEDs or LED arrays provide a high signal-to-noise ratio at the receiver side in environments like office buildings, where a certain light intensity must be met according to regulations. In office environments not exposed to direct sunlight, a link margin of about 30 dB has been measured for distances between 2 m to 4 m. Again, constraints need to be taken into account: for eye safety average intensity restrictions apply, whereas LEDs are peak intensity limited.
 - In other applications, for instance optical underwater communication (Chapters 3 and 10), the signal-to-noise ratio is often quite low, however. Sunlight and nearby light sources have a detrimental effect on the signal-to-noise ratio.
- Interference immunity: Unlike radio waves in the microwave regime, light does not penetrate walls. Hence, the whole light spectrum can be re-used in neighboring rooms, without causing interference. Frequency planning/frequency management is not necessary. From a cellularization point of view, perfect cell borders can be achieved by walls, i.e., there is no inter-cell interference between closed rooms. Furthermore, radio waves in the entire regime allocated by radio systems do not interfere with light. Both frequency ranges can be used simultaneously without causing any interference. (It has been observed that LEDs occasionally disturb radio reception. This effect is owed to non-certified LED drivers rather than the core

LED.) Hence, VLC provides enhanced reliability if line-of-sight between transmitter and receiver is given.

Interference due to light sources located in the same room can be decreased by spot beams. Interference caused by optical products partly occupying the desired light spectrum, e.g. IR remote controls for TV sets, can be optically filtered out, if necessary, or suppressed by means of digital signal processing. Novel alternatives of interference mitigation will be introduced in Chapter 9.

- Area spectral efficiency: VLC promotes the implementation of so-called attocells, i.e., cell sizes even smaller than pico/nano/femto cells familiar in RF-based cellular radio. Accordingly, a higher spatial user density is possible compared to RF communications. This fosters massive connectivity.
- Low-cost hardware: For data rates below approximately 1 Gbps, Tx and Rx hardware is much simpler than RF front-ends, see Chapters 7-9. Hence, low-cost consumer products are feasible. Moreover, VLC can be installed at a low cost since power supply is already available at the installation site ("dual-use of existing infrastructure"). Considering LED-based prototypes, data rates up to about 10 Gbps are reported under lab conditions [Wan15, ISI17].
- Electromagnetic compatibility: Visible light is not harmful to the human body, if eye-safety and flicker regulations are kept in mind in system design.
 However, light quality control is mandatory to prevent psychological and biological effects. Non-visible effects of light on human beings should not be ignored.
- Data security: Since light radiation is easier to constrain in a physical space and because light does not penetrate walls, especially in indoor applications data security is easier to maintain on the physical layer compared to radio communication.
 VLC offers inherent protection against eavesdropping. Also, jamming is more difficult to achieve.
 - Often overlooked in the context of data security of OWC systems is the feeder link, however. Conventional data encryption at bit level, physical layer security, and optical quantum technologies are possible solutions.
- Human centric lighting: In the framework of human centric lighting (HCL), the goal is to match light color, light intensity, and timing of light exposure to our circadian rhythm. By carefully controlling the spectral distribution and the intensity of light sources, HCL affects health, productivity, and emotional comfort of people in a positive fashion. Although the combination of VLC and HCL has not yet been explored in detail, VLC seems to be an enabling technique towards personalizing light quality, coined human centric Li-Fi (HCLiFi) by the author in Chapter 2.

Conceptually, VLC is an alternative to RF communications. It may be used as a **complementary system**. Light communication may complement Wi-Fi (2.4/5 GHz), WiGig (60 GHz Wi-Fi), and LTE/5G cellular radio, similar as WiGig complements Wi-Fi. Power over Ethernet (PoE), powerline communication (PLC), or the digital addressable lighting interface (DALI) may serve as a wireline backbone infrastructure, see Fig. 1.1.

Data communication making use of steered collimated infrared beams, recently proposed in [Koo18], is an alternative to wide-coverage VLC based on LED illumination. This proposal predicts unshared high channel capacities to devices individually. However, precise and adaptive beam steering is not ready for the mass market yet.

Subject Index

A	C
Absorption zone	Camera-based positioning 242
Access point	Candela 30
Active aperture area	Cardinality of the symbol alphabet 66
Adaptive radio 174	Carrierless amplitude and phase
Additive mixing	modulation 75
Additive white Gaussian noise 57, 68	Carrierless OFDM 103
Ambient light 57, 218, 229	Cathode 186, 193
Amplify and forward 229	CCD image sensor 195
Angle-of-arrival localization 247	Cellular radio 223
Animated QR code 117	Channel coefficients 57
Anode	Chromatic circle 20
Area spectral efficiency	Chromaticity coordinates 22
Asymmetrically and symmetrically clipping	Chromaticity detection 80
optical OFDM 102	Chromaticity diagram 20, 22
Asymmetrically clipped optical OFDM 98	Chromaticity-based detection 168
Asymmetrically DC-biased optical OFDM . 101	Chrominance
Autoencoder 83	CIE 1931 XYZ color space 21
Avalanche effect	CIE xyY color space 24
Avalanche photodiode 194	CIELUV color space 24
•	Circadian rhythm 36
В	Circuit noise 57
Bandwidth efficiency	Circular convolution 92
Bandwidth of LEDs 45, 186	Classification of optical modulation
Bandwidth of light spectrum 4, 18	schemes 12
Bandwidth of operational amplifier 201	Closed-loop gain 198
Bandwidth of transmit signal 67, 87	CMOS image sensor 196
Bandwidth of underwater channel 52, 225	Coating 20, 184
Barcode	Code-division multiple access 111
Beam attenuation coefficient 52	Code-division multiplexing 109
Beam modulation method 237	Cognitive radio 174
Bias tee, bias-T 94, 96, 113, 212	Coherent light 66, 190
Bit error rate	Collimated laserbeam 190
Bit-loading 91	Color contrast
Black-body radiator	Color intensity modulation 81
Boost converter	Color mixing
Break point frequency 200	Color model 21
Brightness	Color quality
Buck converter	Color rendering 30

Color rendering index 30	Equivalent discrete-time electrical channel
Color shift keying 78	model 54
Color space	Excess noise
Color temperature	Eye safety 35, 190, 231
Color-domain modulation 78	Eye sensitivity function
Common-mode rejection ratio 198	
Complementary colors	F
Complex-valued space-time block code 136	Fall time 192
Constant-current source 209	Fast Fourier transform 89
Constrained superposition modulation	Fast OFDM 108
scheme	Field of vision
Convolutional code	Field-effect phototransistor 193
Correlated color temperature 28	Filtering 43, 184
Crest factor 56	Fingerprinting
Current noise	Firmware update 173
Cyclic extension	Flicker 35
Cyclic prefix	Flipped OFDM 99
	Forward direction 184
D	Forward error correction 159
Dark current 57, 191, 192	Free-space loss 44
Data detection	Free-space optical communication 3, 230
DC-biased optical OFDM96	Free-space scenario
DC-reduced Hadamard coded modulation 109	Frequency 18
Decode and forward	Frequency shift keying 119
Deep learning	Frequency-division multiplexing 78
DFT-spread OFDM 100	Full width at half maximum 186
Differential pulse position modulation 74	
Differentiator	G
Diffuse attenuation coefficient 52	Gain-bandwidth product 201
Digital addressable lighting interface 5, 224	Gamut
Digital color shift keying 80, 112	Generalized color modulation 83
Dimming 34, 160	Generalized color shift keying 80
Direct detection	Generalized Lambertian source
Discrete cosine transform 108	Global shutter
Discrete Fourier transform 88	Gray labeling 72
Discrete Hartley transform 107	Guard interval
Discrete multitone transmission 85, 95	
Discrete power level stepping concept 112, 145	н
Discrete-time channel model 57	Hadamard coded modulation 109
Display-to-camera link	Half-power angle
Diversity combining	Hardware-friendly modulation
Dual wavelength LED 184	Heliograph
· ·	Heliotrope
E	High-speed amplifier
Electrical power	Highpass filter 200
Emitter follower	Historical background
Enhanced ACO-OFDM	HSI color space
Enhanced PAM-DMT	HSL color space
Enhanced U-OFDM	HSV color space
Equalization	Hue
Equivalent circuit model	Human centric lighting
Equivalent cheunt mouel 107, 133	- i i u i i u i i contrato i i gi i u i i g i i i i i i i i i i i

Hybrid asymmetrically clipped optical	Long term evolution (LTE) 224
OFDM 101	Lowpass filter
Hybrid localization	Lumen 30
Hybrid microwave/optical communication 232	Luminance 22, 31
Hybrid photodetector	Luminous efficacy 30, 33
Hybrid spatial phase-shift keying 121	Luminous flux 31, 32
	Luminous intensity 30
I	Lux 30
Ideal operational amplifier	
Ideal optical software radio 172	M
Illuminance	Mach-Zehnder modulator 66, 190
Image detector	Mapping 67
Image sensor communication 115	Massive MIMO system 149
Image-sensor-based localization 247	Matched filter 60, 68, 86
Impulse response 44, 47, 48	Maximum-likelihood receiver 68
Indoor propagation 45	Metameric modulation 82
Infrared	Micro-LED
Infrared channel modeling 53	Modulating retroreflection 227, 230
Integrator	Monochromatic light source 190
Intelligent radio	Morse telegraphy
Intensity detection	Multi-band mode 173
Intensity modulation 54, 66	Multi-carrier CDMA 95
Internet of Things (IoT) 9, 224	Multi-channel light source 36
Inverse discrete Fourier transform 88	Multi-color LED 184
Inverse fast Fourier transform	Multi-die LED 188
Inverting amplifier	Multi-service mode 173
	Multi-standard mode 173
J	Multi-string LED driver 214
Japan Electronics and Information Technology	Multi-type mode 173
Industries Association	Multichromatic light source 186
Jerlov oceanic and coastal water types 52	Multipath fading 46
Johnson noise 57	Multipath propagation 45
Junction capacitance 187, 192, 193	Multiplication factor 194
Junction temperature 187	Multiplication zone 194
	Multipulse PPM
L	Multiuser MISO broadcasting 147
Labeling 67	
Lambertian source 31, 41	N
Laser diode 190	Noise equivalent power 192, 203
Layered ACO-OFDM 100	Non-inverting amplifier 199
LED array 188	Non-return-to-zero on-off keying 70
LED driver	Noncoherent detection 55, 66
LED-to-camera link	Noncoherent light 66
Lidar techniques	
Light fidelity	0
Light intensity detection 80	On-off keying 70, 159
Light-emitting electrochemical cell 189	Open-loop gain 198
Line code	Operational amplifier 197
Linear modulation schemes	Optical camera communication 115
Linear summation 200	Optical code-division multiplexing 112
Liquid crystal display	Optical concentrator 44
	Optical distance estimation 236

Optical filter 44	Primaries
Optical massive MIMO processing 134	Primary color space 25
Optical MIMO transmission	Primary colors 18
Optical orthogonal code	Propagation in free-space 43
Optical power 32	Propagation in indoor environments 45
Optical rangefinding	Propagation in sea water 51
Optical relaying	Proximity estimation 242
Optical repetition coding	Pulse amplitude modulation 72
Optical runtime measurement 236	Pulse measuring method
Optical single-carrier FDMA 100, 101, 145	Pulse position modulation 73
Optical spectrally efficient FDM 109	Pulse shaping 67
Optical underwater communication 51, 225	Pulse width modulation 73
Optical wireless communication 2	
Optical wireless Ethernet	Q
Optical wireless positioning 235	QR code 116
Optimal power allocation 91	Quadrature amplitude modulation 72
Organic LED	Quality of service 59
Orthogonal frequency-division	Quantum efficiency 186, 192
multiplexing 85	•
Orthogonal space-time block code 136	R
Orthogonal-design space-time block code 140	Radiance
OWC range classification	Radiant sensitivity area 192
	Radio wave
P	Radiometric value 30
PAM-DMT 97	Ray tracing
Peak-to-average power ratio 56, 61, 93, 144	Real optical software radio 172
Phosphorus coating 20, 184	Real-valued space-time block code 136
Phosphorus coating 20, 184 Photoconductive mode 191, 216	Real-valued space-time block code 136 Received signal strength estimation 242
Photoconductive mode	Received signal strength estimation 242
Photoconductive mode 191, 216 Photocurrent 191–193	Received signal strength estimation 242 Reconfiguration
Photoconductive mode191, 216Photocurrent191-193Photodetector191	Received signal strength estimation242Reconfiguration173Reed-Solomon code161
Photoconductive mode191, 216Photocurrent191-193Photodetector191Photodiode190	Received signal strength estimation242Reconfiguration173Reed-Solomon code161Reflectance coefficient46
Photoconductive mode191, 216Photocurrent191-193Photodetector191Photodiode190Photodiode circuit design wizard217Photometric eye sensitivity30Photometric value30	Received signal strength estimation242Reconfiguration173Reed-Solomon code161Reflectance coefficient46Region-of-interest signaling119Relaying227Repetition MIMO141
Photoconductive mode191, 216Photocurrent191-193Photodetector191Photodiode190Photodiode circuit design wizard217Photometric eye sensitivity30	Received signal strength estimation242Reconfiguration173Reed-Solomon code161Reflectance coefficient46Region-of-interest signaling119Relaying227Repetition MIMO141Resonant cavity LED189
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184	Received signal strength estimation242Reconfiguration173Reed-Solomon code161Reflectance coefficient46Region-of-interest signaling119Relaying227Repetition MIMO141Resonant cavity LED189Responsivity56, 192
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2	Received signal strength estimation242Reconfiguration173Reed-Solomon code161Reflectance coefficient46Region-of-interest signaling119Relaying227Repetition MIMO141Resonant cavity LED189Responsivity56, 192Return-to-zero on-off keying70
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2 Photopic vision regime 32 Photoresistor 191	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2 Photopic vision regime 32 Photoresistor 191 Photothyristor 193	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2 Photopic vision regime 32 Photoresistor 191	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2 Photopic vision regime 32 Photoresistor 191 Photothyristor 193 Phototransistor 190, 193 Photovoltaic mode 191, 216	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24 Rise time 192
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2 Photopic vision regime 32 Photoresistor 191 Photothyristor 193 Phototransistor 190, 193 Photovoltaic mode 191, 216 Photovoltaic module 191	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2 Photopic vision regime 32 Photoresistor 191 Photothyristor 193 Phototransistor 190, 193 Photovoltaic mode 191, 216 Photovoltaic module 191 Planckian locus 23	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24 Rise time 192
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2 Photopic vision regime 32 Photoresistor 191 Photothyristor 193 Phototransistor 190, 193 Photovoltaic mode 191, 216 Photovoltaic module 191 Planckian locus 23 Pointing and acquisition problem 231	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24 Rise time 192 Rolling shutter 118
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2 Photopic vision regime 32 Photoresistor 191 Photothyristor 193 Phototransistor 190, 193 Photovoltaic mode 191, 216 Photovoltaic module 191 Planckian locus 23 Pointing and acquisition problem 231 Polar OFDM 101	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24 Rise time 192 Rolling shutter 118 S Saturation
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2 Photopic vision regime 32 Photoresistor 191 Photothyristor 193 Phototransistor 190, 193 Photovoltaic mode 191, 216 Photovoltaic module 191 Planckian locus 23 Pointing and acquisition problem 231 Polar OFDM 101 Polymer dispersed liquid crystal foil 219	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24 Rise time 192 Rolling shutter 118 S Saturation 26 Schottky photodiode 193
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photophone 2 Photopic vision regime 32 Photoresistor 191 Photothyristor 193 Phototransistor 190, 193 Photovoltaic mode 191, 216 Photovoltaic module 191 Planckian locus 23 Pointing and acquisition problem 231 Polar OFDM 101 Polymer dispersed liquid crystal foil 219 Power LED 185	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24 Rise time 192 Rolling shutter 118 S Saturation 26 Schottky photodiode 193 Scotopic regime 32
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photopic vision regime 32 Photoresistor 191 Photothyristor 193 Phototransistor 190, 193 Photovoltaic mode 191, 216 Photovoltaic module 191 Planckian locus 23 Pointing and acquisition problem 231 Polar OFDM 101 Polymer dispersed liquid crystal foil 219 Power LED 185 Power over Ethernet 5, 224	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24 Rise time 192 Rolling shutter 118 S Saturation 26 Schottky photodiode 193 Scotopic regime 32 Scrambler 163
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photopic vision regime 32 Photopic vision regime 32 Photoresistor 191 Photothyristor 193 Phototvansistor 190, 193 Photovoltaic mode 191, 216 Photovoltaic module 191 Planckian locus 23 Pointing and acquisition problem 231 Polar OFDM 101 Polymer dispersed liquid crystal foil 219 Power LED 185 Power over Ethernet 5, 224 Powerline communication 5, 224	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24 Rise time 192 Rolling shutter 118 S Saturation 26 Schottky photodiode 193 Scotopic regime 32 Scrambler 163 Screen-to-camera link 115
Photoconductive mode 191, 216 Photocurrent 191–193 Photodetector 191 Photodiode 190 Photodiode circuit design wizard 217 Photometric eye sensitivity 30 Photometric value 30 Photomultiplier 190 Photon 17, 184 Photopic vision regime 32 Photoresistor 191 Photothyristor 193 Phototransistor 190, 193 Photovoltaic mode 191, 216 Photovoltaic module 191 Planckian locus 23 Pointing and acquisition problem 231 Polar OFDM 101 Polymer dispersed liquid crystal foil 219 Power LED 185 Power over Ethernet 5, 224	Received signal strength estimation 242 Reconfiguration 173 Reed-Solomon code 161 Reflectance coefficient 46 Region-of-interest signaling 119 Relaying 227 Repetition MIMO 141 Resonant cavity LED 189 Responsivity 56, 192 Return-to-zero on-off keying 70 Reverse direction 191 Reverse polarity optical OFDM 101 Reverse voltage 192 RGB color space 24 Rise time 192 Rolling shutter 118 S Saturation 26 Schottky photodiode 193 Scotopic regime 32 Scrambler 163

Semiconductor LED	Tone contrast
Shade 19	Transimpedance amplifier 198, 215
Shockley's formula 186	Transition frequency
Shot noise 57, 194	Triangulation
Signal-to-noise ratio 59, 203	Tristimulus values
Silicon photodiode	Turbulence-induced fading
Silicon photomultiplier	Twinkle variable pulse position
Simultaneous localization and mapping 239	modulation 121
Single-carrier FDMA 100	
Single-photon avalanche diode 195	U
Slew rate	Ultraviolet
Smart glass	Ultraviolet channel modeling 53
Smart lighting	Undersampled frequency-shift on-off
Software-defined radio	keying 119
Space-time coding	Undersampled phase-shift on-off keying 119
Spatial 2-PSK	Uniform OFDM
Spatial diversity	Unipolar amplitude shift keying
Spatial DMT 149	1 1 7 0
Spatial modulation 144	V
Spatial multiplexing 133, 143	Value
Spatial optical OFDM 101, 145, 146	Vantablack
Spatial pulse position modulation 145	Variable pulse position modulation 75, 159
Spatial repetition coding 141	Variable-current source
Spatial summing architecture 112, 145	Virtual light source
Spectral efficiency	Visible light communication
Spectral power distribution 23, 28	Visible light positioning 6, 235, 241
Spectral sensitivity	Visible light spectrum
Spectrally and energy efficient OFDM 100	Vision-based positioning
Spectrally-enhanced unipolar OFDM 100	VLC applications
Standard colorimetric observer functions 21	VLC architecture
Standard RGB color space	VLC consumer products
Standardization	VLC key features
Stereo vision	Voltage noise
Subtractive mixing	voltage noise
Sunlike LED	W
Superposition modulation 112, 145	Wall-plug efficiency 34, 186
Symbol constellation	Water-filling method
Symbol duration	Wave-particle duality
Symbol rate	Wavelength
TO.	Wavelength-division multiple access 111
T	Wavelength-division multiplexing
Tactile Internet	Wavelet packet division multiplexing 108
Thermal noise	White LED
Threshold voltage	White light
	White point
Time of arrival localization 243	Winte point
Time-of-arrival localization	Y
Time-of-flight camera	
Tint	Yellow gap 186 Yttrium aluminum garnet 20, 184
Tone	11111111111111111111111111111111111111